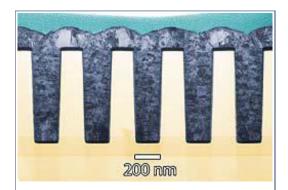
NISTTech

Superconformal Film Growth


Void-free 3D metallized structures through Damascene metallization

Description

This invention is a deposition process that allows void-free filling of recessed features on non-planar metallized surfaces with nickel and related iron group alloys. The process could enable whole new classes of sensors and microelectromechanical (MEMS) devices. The method is a variation of a technique called "Damascene metallization" that often is used to create complicated 3-D copper interconnections, the "wiring" that links circuit elements across multiple layers in advanced, large-scale integrated circuits. The challenge in Damascene metallization is ensuring that the deposited metal completely fills in the deep, narrow trenches without leaving voids. NIST scientists designed the void-free 3-D metal structures by adding a chemical to the electrodeposition solution to prevent the metal from building up too quickly on the sides of the trenches and by carefully controlling the deposition process.

NOTE; see NIST Docket 02-011, U.S. Patent #7,429,401 under Citations below.

Images

Transmission electron microscopy image of a thin cross section of 160 nanometer trenches shows deposited nickel completely filling the features without voids

Applications

Microelectromechanical

These new techniques have many potential applications in the MEMS field including information storage devices and silicide contacts.

Magnetic materials

This deposition process can be used in the production of magnetic

recording media and heads; magnetic sensors, actuators, motors for MEMS devices; and memory devices (MRAM) and bio-medical systems.

Advantages

Novel sensors

This process of deposition can enable new types of sensors and MEMS devices.

3D nanostructures

This process is capable of constructing both isolated and interconnected 3D nanostructures that are compatible with semiconductor manufacturing standards.

Abstract

Superconformat Metal Deposition Using Derivitized Substrates: Docket # 02-011

The process of this invention involves first adsorbing a catalyst on the surface of a specimen by immersion in a catalyst-containing solution, followed by electrolytic deposition in a second solution that need not contain catalyst. This two-step superconformal process produces a seam-free and void-free metal microelectronic conductor.

Towards Industrial Scale-Fabrication of Nanowire-Based Devices: Docket # 08-001

The invention deals with the challenge of void-free filling of recessed surface features on non-planar metalized surfaces with iron group magnetic materials. Specifically, the addition of certain benzimidazole derivatives to a conventional additive-free nickel plating baths, e.g. Watts bath NiS04-NiCli, results in a superconformal deposition growth mode. By superconformal deposition we mean that metal deposition occurs preferentially in recessed surface features, such as patterned trenches and vias, thereby resulting in void-free filling. By appropriate patterning and design a variety of fully consolidated 3-D shapes and geometries can be fabricated. The resulting structures have potential use as micromagnets for microelectromechanical devices as well as active magnetic material components for use in a variety of information storage devices. The process may also be useful in the deposition of Ni and related metals as a precursor to forming silcide contacts in microelectronics.

Inventors

- Moffat, Thomas P.
- Lee, Chang Hwa
- Josell, Daniel
- Kim, Soo Kil

Citations

- 1. NIST Docket 02-011, U.S. Patent # 7,429,401, Superconformal metal deposition using derivatized substrates.
- 2. T.P. Moffat, D. Wheeler, and D. Josell. Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS. Journal of The Electrochemical Society, 151 (4), pp. C262-C271, 2004.
- 3. B.C. Baker, C. Witt, D. Wheeler, D. Josell, and T.P. Moffat. Superconformal silver deposition using KSeCN derivatized substrates. Electrochemical and Solid-State Letters, 6 (5), pp. C67-C69, 2003.
- 4. C.H. Lee, J.E. Bonévich, J.E. Davies, and T.P. Moffat, Superconformal electrodeposition of Co and Co–Fe alloys using 2-mercapto-5-benzimidazolesulfonic acid. Journal of The Electrochemical Society, 156 (8), pp. D301-D309, 2009.

Related Items

- Article: New Process Creates 3D Nanostructures with Magnetic Materials
- Article: Ultrathin Wires Made Defect Free

References

NIST Docket 08-001 U.S. Patent Application #20090188805

Status of Availability

This invention is available for licensing.

Last Modified: 09/17/2011